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Error Correction Codes

I A q-ary linear error-correction code C[n,k,d ] of length n and
dimension k is just a k-dimensional subspace of the
n-dimensional vector space Fn

q over the finite field Fq. So,
C[n,k,d ]⊆ Fn

q.

I The minimum Hamming distance d of the code is the least
number of positions in which any two of its vectors differ. In
typical applications, the larger the minimum distance, the
better the code.

I Error correction codes are ubiquitous - they are to be found in
DVDs, CDROMs, computer hardware, communication
systems, space etc.
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Some applications of Codes

(a) CDROM (b) Hard Disks (c) Phones (d) Space
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Codes and Error Correction
I In typical applications, we wish to recover codewords

corrupted by noise: r = c + e, where c ∈ C.
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Figure: Any error of weight less than (d−1)/2 can be corrected.
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Finite Fields

I A finite field Fq is a set of q elements along with the binary
operations · and +. There are the usual properties of
associativity, distributivity, identity and inverse for these
operations.

I q is a prime power. So q = pµ . The prime p is called the field
characteristic.

I There exists elements α in the field Fq called primitive
elements so that, Fq = {0,1,α,α2, . . . ,αq−2}.

I If ν > µ then, Fpµ ⊂ Fpν . Moreover, the extension field Fpµ

can be represented as a vector space Fµ
p over the base field Fp.

I Let β ∈ Fq. Then Fermat’s Little Theorem states that β q = β .
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Reed-Solomon (RS) Codes

I Reed-Solomon codes are Maximum Distance Separable
(MDS) codes. Consider RS q(n;k;d). We have
d = n−k +1.

I Let n ≤ q. An RS codeword can be thought of as the
evaluations over the field Fq of a degree (k−1) polynomial in
Fq[x ].

I Let f = [f0 f1 f2 . . . fk−1] be an information vector. Represent it
as an information polynomial
f (x) = f0 + f1x + f2x

2 + · · ·+ fk−1x
k−1. Let α be a primitive

element of Fq. Then the corresponding Reed-Solomon
codeword is [f (0) f (1) f (α) f (α2) . . . f (αn−2)].
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Algebraic decoding of RS codes

I Let ρ = k/n denote the code rate. Various algebraic RS
decoders due to Berlekamp et al.[1960s] can decode any error
pattern of weight less than n · (1−ρ)/2.

I Recent progress made by Sudan[1997] and
Guruswami-Sudan[1999] resulted in an algebraic list decoder
for RS codes which can correct any error pattern of weight
less than n · (1−√ρ).

I Such decoders are called bounded distance algebraic decoders.
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Berlekamp vs Guruswami-Sudan
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Figure: Comparison of bounded distance algebraic decoders for RS codes.
τ is the relative error correction radius.
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Multidimensional Extensions to RS codes

I Product Reed-Solomon (PRS) code
I Product Reed-Solomon codes are natural extensions of RS

codes. A codeword in the m-dimensional PRS code
PRS q,m(qm;k1,k2, . . . ,km;d) is formed from the qm

evaluations of an m-variate polynomial with degree at most
(kj −1) in variable xj .

I The codewords of an m-dimensional PRS code can be
naturally represented over an m-dimensional hypercube.

I Reed-Muller (RM) code
I Another multidimensional extension of a RS code is the

Reed-Muller code. A codeword in the m-dimensional RM code
RM q(`;m;qm) is formed from the qm evaluations of an
m-variate polynomial with total degree at most `.

I Typically a Reed-Muller code can be thought of as a sub-code
of a PRS code.
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A List Decoding Algorithm for RM codes

I We wish to obtain an algebraic decoding algorithm for RM
codes.

I For this we will try to embed the m-dimensional RM code
over Fq inside a RS code over the extension field Fqm . We can
then use one of the existing RS decoding algorithms.

I This strategy leads us to a form of the Pellikaan-Wu[2005] list
decoding algorithm for RM codes. So what do we gain?

I We get an easily accessible correctness proof for the
Pellikaan-Wu algorithm using only basic notions from Galois
theory.

I As an added benefit we get a constructive proof for the
famous DeMillo-Lipton-Schwartz-Zippel lemma. This lemma
is an upper bound on the number of distinct zeros of a
multi-variate polynomial over a finite field.
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Correctness Proof (1)
Let ααα j ∈ Fm

q . Then,

RM q(`, m, n)
def
= { [ϕ(ααα1) ϕ(ααα2) · · · ϕ(αααn) ]

| ϕ ∈ Fq[x1, x2, . . . , xm], deg(ϕ)≤ ` } (1)

I Let {a1, a2, . . . , am } be a basis for Fqm over Fq. For example
one might as usual use a polynomial basis
{1, ξ , ξ 2, . . . , ξm−1 } where ξ is any primitive element in Fqm

I Let [x1 x2 . . . xm] ∈ Fm
q .

I Then the map ψ : Fm
q → Fqm defined as in (2) is an

isomorphism.

[x1 x2 . . . xm] 7→ X
def
=

m

∑
j=1

ajxj (2)
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Correctness Proof (2)
I Claim: To obtain a decoding algorithm for RM codes, all we

have to do is to form the reverse map of (2).
I Form the linear system:

A · [x1 x2 . . . xm]T = [X X q X q2
. . . X qm−1

]T (3)

where,

A
def
=


a1 a2 . . . am

aq
1 aq

2 . . . aq
m

...
...

. . .
...

aqm−1

1 aqm−1

2 . . . aqm−1

m

 (4)

We used only Fermat’s little theorem and (2) in forming A.
I So the reverse isomorphism for (2) is:

X 7→ [x1 x2 . . . xm]T
def
= A−1 · [X X q X q2

. . . X qm−1
]T (5)
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Correctness Proof (3)

I For (5) to be valid, A should be invertible. Because
{a1, a2, . . . , am } is a basis for Fqm over Fq, it follows from [1,
Corollary 2.38, pp. 58] that A is non-singular.

I Now using (5) one can rewrite any m-variate polynomial in
Fq[x1, x2, . . . , xm] as a uni-variate polynomial in Fqm [X ]. If the
multivariate polynomial has total degree at most `, the
uni-variate polynomial has degree at most `qm−1.

I So, if `≤ q then

RM q(`, m, n)⊆RS qm(n, `qm−1)∩Fn
q (6)
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Pseudo Code (1)

RM-List-1
INPUT: q, `≤ q,m,n ≤ qm ; r = [ r1 r2 . . . rn ] ∈ Fn

q .
STEPS:

1. Compute the parameter t =
⌈
n

(
1−

√
`qm−1/n

)⌉
.

2. Using Guruswami-Sudan algorithm find a list L of codewords c ∈RS qm (n, `qm−1) such that dH (c, r) < t.

3. For every c ∈L check if c ∈ Fn
q :

i. If no then discard c from L .

ii. If yes then check if c ∈RM q(`, m, n) :
a. If no then discard c from L .
b. If yes then keep c in the list L .

4. return

OUTPUT: L
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Complexity and Consequences

I Complexity of RM-List-1 is O(n3) field operations in Fqm . It

can correct up to
⌈
n
(
1−

√
`qm−1/n

)⌉
errors.

I A version of this algorithm was proposed by Pellikaan-Wu in

[4]. They showed a radius of
⌈
n
(
1−

√
`(q +1)m−1/n

)⌉
.

I Product Reed-Solomon codes can be decoded using
RM-List-1, achieving a relative error correction radius of

(1−
√

∑
m
i=1 ρi ), where ρi

def
= ki/q.

I Our proof also showed that any non-zero multivariate
polynomial ϕ(x1, x2, . . . , xm ) of total degree ` has at most
`qm−1 zeros in Fm

q which is the
DeMillo-Lipton-Schwartz-Zippel lemma. The original proofs
use probabilistic arguments.
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A Better Algebraic Decoder for q-ary PRS and RM codes

I A codeword in the code PRS q,m(qm, k1, . . . , km) can be
described within an m-dimensional cube of side length q.

I When m = 1, Guruswami-Sudan algorithm can decode up to
q · (1−

√
k1/q) errors.

I Claim: If we can correct tM−1 errors when m = M−1, then we
can correct tM = tM−1 ·q · (1−

√
kM/q) errors when m = M.
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Description of a 2D PRS codeword.
A 2D Product Reed
Solomon codeword
described on a
square.
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Sketch of proof - 2D case
Recursive decoding
of 2D Product Reed
Solomon code - all
errors of weight at
most t2 = q2 · (1−√

ρ1) · (1−
√

ρ2) are
corrected.
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The recursive algorithm

I Let 〈[c i1,i2,...,im ]〉 be a codeword in PRS q,m(qm, k1, . . . , km),
where each of the indices ij take values in the range {1, . . . ,q}.

I 〈[caj ,aj+1,...,am

i1,i2,...,ij−1
]〉 denotes the (j−1)-dimensional vector formed

out of 〈[c i1,i2,...,im ]〉 when the coordinates indexed by
(ij , ij+1, . . . , im) are fixed at (aj ,aj+1, . . . ,am) and the rest of
the indices are free.

I 〈[caj ,aj+1,...,am

i1,i2,...,ij−1
]〉 belongs to PRS q,j−1(q

j−1, k1, . . . , kj−1).
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Pseudo Code (2)
PRS-Decoder

INPUT: q,(k1 ,k2 , . . . ,km) : ki < q,m; r ∈ Fn
q , where r

def
= 〈[ ri1 ,i2 ,...,im ]〉;1≤ ij ≤ q.

STEPS:

1. If m = 1 do:

i. Compute the parameter t1 =
⌈
q

(
1−

√
k1/q

)⌉
.

ii. Using Guruswami-Sudan algorithm find a list L1 of codewords c1 ∈RS q(q, k1) such that
dH (c1 , 〈[ r i1

]〉) < t1.

iii. Search L1 for c1 such that dH (c1 , 〈[ r i1
]〉) is least. Substitute in-place the positions corresponding to 〈[ r i1

]〉
in r with c1 and return.

2. For am = 1,2, . . . ,q do:

i. Set r ′ ←〈[ ram
i1 ,i2 ,...,im−1

]〉

ii. Set m′ ←m−1 and n′ ← qm′

iii. Recursively decode r ′ using PRS-Decoder with input parameters q,(k1 ,k2 , . . . ,km′ ),m
′; r ′ ∈ Fn′

q .

3. Compute the parameter tm =
⌈
q

(
1−

√
km/q

)⌉
.

4. For each m−1 tuple (a1 ,a2 , . . . ,am−1) do:

i. Using Guruswami-Sudan algorithm find a list Lm of codewords cm ∈RS q(q, km) such that

dH (cm , 〈[ ra1 ,a2 ,...,am−1
im

]〉< tm .

ii. Search Lm for cm such that dH (cm , 〈[ ra1 ,a2 ,...,am−1
im

]〉) is least. Substitute in-place the positions

corresponding to 〈[ ra1 ,a2 ,...,am−1
im

]〉 with cm .

5. return

OUTPUT: Resulting vector r
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Pseudo Code (3)

RM-List-2
INPUT: q, `≤ q,m,n ≤ qm ; r = [ r1 r2 . . . rn ] ∈ Fn

q .
STEPS:

1. For each possible m-tuple (k1 ,k2 , . . . ,km) : ki < q,∑j kj ≤ ` do:

i. Using PRS-Decoder with input parameters q,(k1 ,k2 , . . . ,km),m; r ∈ Fn
q , decode r as c.

ii. Add c to a list L of codeword candidates.

2. return

OUTPUT: L
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Performance and Complexity

I PRS-Decoder can correct up to n∏
m
i=1(1−

√
ρi ) errors.

I The complexity of the recursive decoder PRS-Decoder is
O(qm+2) field operations in Fq. This is ≈O(n) for large m.

I The complexity of RM-List-2 is ≈O(n2) field operations in
Fq. This is substantially better than the Pellikaan-Wu
algorithm.

I Let Vm denote the volume of the rate region where the
recursive algorithm performs better than the Pellikaan-Wu
algorithm.
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2D Performance
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Figure: Decoding Radius of the 2D Pellikaan-Wu algorithm and the new
recursive algorithm
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2D Performance (contd)
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Figure: Rate Region where the 2D recursive algorithm performs better
than Pellikaan-Wu algorithm
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Performance of RM-List-2 for various m
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Figure: Fraction of Rate Region where the recursive algorithm performs
better than Pellikaan-Wu algorithm
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Conclusions

I We derived a simple correctness proof for Pellikaan-Wu
algorithm.

I Obtained a constructive proof for
DeMillo-Lipton-Schwartz-Zippel lemma.

I Proposed a recursive algebraic decoder for PRS and RM
codes.

I Showed that this recursive decoder outperformed the
Pellikaan-Wu decoder for much of the rate region.

I The recursive decoder is an order of magnitude more efficient
than the Pellikaan-Wu algorithm and the operations are over a
much smaller finite field.
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